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Calculation of supersonic flows with heat addition

By E. G. BROADBENT
Imperial College of Science, Technology and Medicine, London SW7 2BZ, UK.

In the 1970s a method was published, and applied to various configurations, for
calculating two-dimensional steady inviscid supersonic flow fields with heat addition.
The method is of inverse type in that for a given geometry the distribution of heat
added to the flow is not prescribed in advance ; instead the streamlines are prescribed
and the heat addition necessary to satisfy the Euler equations is then found. The
present paper describes how it can be adapted to satisfy the Euler equations for a
given mode of heat addition. Its main advantage is that the finite difference
technique is always applied along the mathematical characteristics of the equations
being satisfied at each stage of the calculation.
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1. Introduction

It is well known that supersonic combustion can be used to generate pressure fields
that will provide a propulsive force for a hypersonic aircraft. The combustion process
itself is complicated and here we consider only the effects of heat (and mass) addition
on the flowfield. Even so, mathematical analysis is complicated by the fact that heat
addition produces changes in entropy, stagnation pressure and Mach number (as well
as, introducing vorticity) so that the characteristics of the Euler equations can
undergo rapid changes of direction.

Oswatitsch (1959) used linear theory to show how heat addition to the flow
adjacent to the downstream face of a double wedge could provide a propulsive force
and Zierep (1966) extended this work to larger wedge angle using the hypersonic
approximation. I adopted an inverse method to analyse more realistic geometries
(see, for example, Broadbent 1971, 1973, 1976) and this provides the basis of the
method described here, although it is no longer restricted to the inverse approach.
Much of the early work is described by Kiichemann (1978).

The method has been applied to two-dimensional (steady) flow (plane or
axisymmetric) with heat addition, and in its original form the streamlines are chosen,
so that 6, the flow direction, is everywhere specified. The four governing equations
(continuity, two components of momentum and energy) are then solved for the four
field variables pressure p, flow speed u, density p and heat addition per unit volume
per second . Choice of streamlines may seem unwarranted, but the method was
intended to provide a rapid way of comparing lift and net wave drag on a range of
section shapes with external or ducted heat addition, and this it does very effectively.
Bounding streamlines are known for each configuration and the method allows the
pressure to be specified along one wall, which is just what is wanted for this kind
of calculation; streamline shape can be specified algebraically with adjustable
parameters so that the effect of different modes of heat addition can be examined.
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Figure 1. Mesh diagram (a) general arrangement; (b) local mesh for solution
of momentum equations for the element (3, 7).

The four equations may be written, in streamwise coordinates for plane two-
dimensional steady inviscid flow

A(puw) f3s = myw, (1)
pudu/0s = —0p/0s—mgu, (2)
pu?00/0s = —0p/on, (3)

of v 1o, .
a—s(;—:puw) —I-Z&(pu w) = mywC, T+ Qw, (4)

where p is density, u is flow speed, w is width of an incremental stream tube, m; is
rate of addition of fuel mass per unit volume, p is pressure, 6 is flow direction, y
is ratio of specific heats, C, is specific heat at constant volume of the added fuel,
T} is absolute temperature of the added fuel, ¢ is heat added to the flow per unit
volume (e.g. by combustion) and (ds, d»n) are intrinsic coordinates along the stream-
lines and normals respectively.

The terms in m; were omitted in the earlier work but are included here because
they can be significant, even for hydrogen, at high supersonic Mach numbers. In the
analysis given here, m; is presumed to be initially at rest relative to the vehicle,
although allowance could be made for any known form of injection.

The method of solution was first to assume that 6 was known throughout the
flowfield and to set up a mesh along the streamlines and normals. Then with m; = 0
(or alternatively with m,; a given function of position) and w determined by the
distribution of 6, equation (1) determines pu as a function of position, whence
substitution in (2) and (3) leads to a pair of linear hyperbolic equations in p and
with real characteristics that lie along the streamlines and normals. Numerical
solution via difference equations is then straightforward and very fast. If p(Z,j), u(4,7)
denote the pressure and flow speed at the intersection of stream tube ¢ and normal
tube j (see figure 1), then (2) and (3) give a pair of linear equations to solve for
p(3,7), u(i,j) in terms of the values at (¢—1,j) and (¢,j—1). Thus with upstream
conditions given (j = 1) together with the pressure along one bounding streamtube
(¢ = 1), p and » can be determined throughout the field by marching along successive
normals away from ¢ =1 and j = 1. Finally, since p and p are now known, 7" and
hence y can be found from an equation of state and then (4) determines ¢, the heat
addition necessary to satisfy the chosen streamlines and bounding pressure
distribution. Broadbent (1973) gives a wide range of results obtained in this way for
hypersonic sections designed to give a net propulsive force by means of direct heat
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Calculation of supersonic flows with heat addition 155

addition to the supersonic flow. Values of the sectional lift and wave-drag coefficients
quoted are in the ranges 0.03 to 0.06 and —0.03 to —0.07 respectively for a free-
stream Mach number of 7.5.

Although the method has many attractive features it also has disadvantages. It is
sometimes difficult to design suitable streamlines, and small regions of negative heat
addition are often a bugbear. This inverse nature of the solution, where @) appears as
the outcome of the calculation rather than the input to it can, however, be avoided
as described in §2 which also gives a brief illustration of the potential importance of
mass addition. Some examples for given @ distribution are given in §3 and more
recent developments described in §4.

2. Solution for given heat and mass addition

The solution of (1)—(4) follows the same basic pattern as that outlined in §1 except
that in this case 6 (and w) are unknown and must be found by an iterative method
starting from an initial trial. For clarity, consider a free supersonic plane two-
dimensional heated jet, symmetric about its centreline which can be taken to be the
x axis. If N, streamtubes are to be used in the mesh, these are defined by N,
streamlines together with the axis of symmetry. For the next normal downstream of
known conditions let

0=20,+z, (5)

where 6 is an N, -element vector containing the streamline slopes, @, is the known
vector of 6 for the normal immediately upstream and z is an unknown vector that
may initially be taken as zero. The correct solution for z is then found by Newton’s
method, for given vectors Q and m;.

For example, let
F=0-0, (6)

where Q, is the required mode of heat addition. Then Q can be calculated for the
initial z using the method of §1, provided the bounding pressure is known at one end
of the normal. In this example the pressure at the edge of the jet can be calculated
by standard supersonic theory applied to the turning of the free stream according to
the bounding 6 given by (5). Thus a march along the normal towards the axis of
symmetry is possible, and the resulting vector F is determined. An incremental
change to 2(1) then allows the vector 0F/dz(1) to be calculated numerically, and
similarly 0F/0z(i) for ¢ = 1,..., N, which completes the jacobian 4 say, where

0F(1)/02(1) ... 0F(1)/02(N,)
A= : : . (7)
oF(N,)/02(1)...0F(N,)/02(N,)
Newton’s method then gives
A- (z(lc+1) _z(lc)) — —F(z(’”)), (8)

where the new vector, z#™V, is an improvement on the previous choice z®, and is
readily determined by solution of the set of linear equations (8).

If the flow is axisymmetric, the only change to the governing equations (1)—(4) is
that w is replaced by wy throughout, where y is the (mean) distance of the
stream-tube element from the axis of symmetry, since wy is proportional to the
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156 E. G. Broadbent

annular area of the element. For an axisymmetric free jet, the calculation of the
bounding pressure from the supersonic free stream is less straightforward, but an
alternative possibility is to increase N, so as to include a number of unheated
streamtubes outside the jet. If the outermost of these lies outside the Mach cones of
the pressure waves from the jet it will be at the ambient pressure along the length
of interest, and the solution can proceed as before. Naturally, for these external tubes
@y =0.

A slight variation is needed to analyse a ducted flow because it is no longer possible
to calculate the pressure along either bounding streamline. On the other hand, for N,
streamtubes there are only N,—1 unknown values of 6 (since 6 is known for each
bounding streamline) and the final unknown may thus be a bounding value of
pressure (or flow speed), e.g.

(9)

Other variations are open to choice. For example the unknown vector z can be
allocated to any set of parameters that enable a complete normal of the mesh to be
constructed ;

w= (1+2)w, (10)

has been used where z, here, is a diagonal matrix. Nor is it necessary to use Newton’s
method, involving the time-consuming construction of the jacobian; e.g. a quasi-
Newton method could be used instead. Moreover convergence can be problem with
Newton’s method if the initial choice for z is too remote from the solution. In some
applications to more complicated flowfields with strong gradients it was necessary to
adjust the geometry, or the amount of heat, in stages. This was done by solving for
a geometry with smaller gradients, and if IV, is the number of normals covering the
flowfield by then storing a matrix containing the N, converged vectors z; next the
geometry was moved a step nearer to the required geometry and the converged sets
of z were used as the new trial values. The whole sequence of steps was readily
included in the program. Such an approach is time-consuming, but on the other hand
when Newton’s method does converge it does so very rapidly.

The numerical examples have all been run on a Zenith PC with a FORTRAN compiler
and the computing time for a complete run in a recent example was 35s. This
particular example was for supersonic duct flow with a two to one expansion ratio
and with heat addition. The program was in FORTRAN double precision with N, = 7,
N, = 20 and the accuracy required for solution of the linear equations was 10~ and
for convergence in the Newton iterations was 1077. The initial choice for each normal
was z = 0 and the number of iterations was either 3 or 4 for all normals.

In all the examples given in this paper the mass addition m; has been neglected for
simplicity, although it has been included in some practical applications. The reason
for its potential importance at higher supersonic Mach numbers can be illustrated
quite simply. Elementary analysis for quasi one-dimensional steady inviscid flow in
the « direction gives

1dp _ yM2{ 1d4 y—1g+%<p0vﬂ}(y—1)

pde M*—1| Adx ' v pu pu

v—1
+1+ M2)}, 11
» y 3 (11)

where M is the Mach number, and A is the cross-sectional area of the duct.
Suppose that for a given distribution of ¢ and m, the area distribution is adjusted
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M=3
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Figure 2. Two-dimensional symmetric free jet for M, = 3. The top diagram shows the geometry of
the upper half of the jet with downstream temperatures. The second diagram shows the pressure
distribution for the innermost stream tube (full line) and along the jet periphery (dashed line);
below are the temperature and Mach number distributions for the innermost stream tube. The
energy balance is: in 59.102, out 59.090.

to keep p constant. Then if 4 increases from 4, to A4,, the thrust will be given by
p(4,—A4,), where the area increase is given by integration of

ldd 1—_12+%{&@_f§@;1_>
Ade  y pu pul p Y

Clearly the relative importance of m, to @ increases like M? at large M. The derivation

of (11) assumes that a quantity mg(x) is smoothly accelerated to the speed w(x)

at position x. In a practical application the problem of mixing requires detailed
consideration.

+1+7i2—_1M2}. (12)

3. Simple examples

Figure 2 shows results for a symmetric two-dimensional free jet in a uniform
supersonic flow at M = 3. The distribution of heat addition chosen was

Q. = Q. cosinysinmg, (13)

where @), is the heat supply per cell of the mesh, @, is an adjustable constant, # is
a normal coordinate running from 0 on the axial streamline to 1 on the peripheral
streamline, and £ is a streamwise coordinate running from 0 at the upstream end to
1 at the downstream end. The inlet Mach number and temperature were taken to
be 3 and 1000 K respectively, these being typical of the flow downstream of a
hypersonic intake. For the thermodynamics the gas constant R was kept constant but
v was allowed to vary with temperature according to

y = 1.4—0.12(1 — e~ (T/1200%), (14)
Phil. Trans. R. Soc. Lond. A (1991)
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158 E. G. Broadbent

- 261
2.95

— 3.13

Figure 3. Axisymmetric free jet (M, = 3). The top diagram shows the jet periphery and the
outermost streamline of the calculation. In the lower diagrams distributions are given for the
innermost stream tube (full line) and innermost unheated stream tube (dashed line). The energy
balance is: in 120.197, out 120.241.

Table 1
/T, P/Pu u/ g, PUS Pog U
innermost stream tube 3.474, 3470 1.954, 1.949 3.264, 3.271  1.836, 1.837
outermost stream tube 1.645, 1.650 2.223, 2.256 3.176, 3.168  4.291, 4.330

which agrees fairly well with experimental values for air up to about 3000 K. @, was
chosen to give a peak temperature of just over 3000 K. This calculation was in single
precision with N, = 4, N, = 10, but even for such a coarse mesh the energy balance
is quite good: the energy in comprises the upstream rate of flow of energy into the
jet plus the total rate of heat supply, and the energy out comprises the downstream
rate of flow of energy out of the jet.

In this example, the peripheral pressure of the jet was calculated from the turning
of the free stream, but as noted in §2 for axisymmetric flow it may be simpler to
include sufficient external stream tubes to reach the parallel free stream at p_. The
effectiveness of this can easily be checked for a plane jet by comparing the two
methods. This has been done for a jet like that of figure 2 but shorter and results are
indicated in table 1.

In this table the first number relates to the calculation with N, = 4 and N, = 10,
the second has N, = 10, N, = 10 where only stream tubes 14 are heated. The second
calculation was in double precision because of the larger set of linear equations.

Figure 3 shows a similar calculation for an axisymmetric free jet using four heated
and six unheated stream tubes. Again the jet is shorter than in figure 2 (a longer jet

Phil. Trans. R. Soc. Lond. A (1991)
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/T,
0.98
0.97
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2.74
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3.25

2.0

0 1 2 3 4

Figure 4. Axisymmetric duct flow with four heated and two unheated stream tubes. In the lower
diagrams the full line is for the innermost and the dashed line for the outermost stream tube. The
energy balance is: in 24.083, out 24.128.

would have needed more unheated stream tubes) and the resulting pressure
distribution is of some interest. The innermost stream tube is widening so fast at the
downstream end that the temperature actually starts to fall despite the continuing
heat addition. In this case and the next, the cosine term in (13) is square-rooted, so
that the radial cut-off of heat is sharper.

Figure 4 shows an axisymmetric duct flow with N, = 6, the four innermost stream
tubes being heated and the two outermost unheated. In a flow such as this the
interactions are considerable as the pressure distribution shows.

It is perhaps rather remarkable that a solution can be found to supersonic flows
with complicated wave interactions without taking direct account of the waves.
What happens is that the calculation treats a hypothetical gas constrained to follow
fixed streamlines by suitable release of heat, and for this hypothetical gas the
characteristics follow the streamlines and normals. Newton’s method then adjusts
the streamlines until they finally coincide with those of a real Euler gas. It is the fact
that the finite differences are always taken along the mathematical characteristics
that provides the principal advantage of the method. Application of the method to
a more realistic hypersonic configuration is illustrated by Townend (this Theme).

4. Developments

It was noted in §2 that convergence is not always easy to achieve. This can be
improved and the accuracy increased at the same time by not constructing the mesh
in the physical plane. Instead one transforms from coordinates (x,y) to coordinates
(¢1,9,) say which follow the streamlines and normals (Broadbent 1971, Appendix)

with
ds =h,dq, dn = h,dg, (15)
Phil. Trans. R. Soc. Lond. A (1991)
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160 E. G. Broadbent
and 0hy/0q, = h,00/0q,, Oh,/0q, =—h,00/0q,, (16)

where %, and A, are the usual scale parameters with dimensions of length and ¢, and
¢, are non-dimensional orthogonal coordinates (they are equivalent to &, % in (13)).
In the (q,,9,) plane the mesh becomes a simple rectangular grid, so the step of
constructing a normal in the physical plane is replaced by finite difference solution
of (16) along a line ¢, = const. With A, 4, and 6 known on the (q,,¢,) grid the
geometry is specified and (x,y) can be obtained for each point by numerical
summation. The main advantage lies in the fact that 4, A, and 6 are assumed to vary
linearly from grid point to grid point (in the finite difference solution of (16)) so that
0 is everywhere continuous, whereas it changes discontinuously at the nodes of
the mesh described in §2. In other respects the solution can proceed as before; the
computing times quoted in §2 were for an example using this technique.
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